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A new approach to the calculation of the dispersion integrals involved in determining the 
dielectric properties of arbitrary plasmas is developed. Rather than relying on ad hoc 
approximation methods, the dispersion integrals for an arbitrary distribution function with 
continuous derivative are systematically expanded in terms of a set of orthogonal functions for 
which the corresponding dispersion functions are known. Realizations of this general 
approach are discussed for unmagnetized plasmas and generalizations to treat relativistic and 
magnetized plasmas are also outlined. The method developed here enables the dispersion 
integrals for an arbitrary distribution to be calculated both systematically and efficiently for 
either real or complex arguments. 0 1990 Academic Press, Inc 

1. INTRODUCTION 

The dielectric properties of a plasma determine the dispersion, absorption, and 
mode conversion of the waves it supports, and hence are of central importance in 
all problems concerning wave propagation and absorption. In connection with 
laboratory experiments and astrophysical observations, it is often necessary to 
calculate the dielectric properties of actual observed plasmas, rather than analyti- 
cally tractable idealized ones. Hence, the principal purposes of this paper are to 
develop a systematic approach to the calculation of the dielectric properties of non- 
relativistic unmagnetized plasmas having arbitrary velocity distribution functions 
and to indicate how these results can be generalized to treat relativistic and 
magnetized plasmas. 

General analytic treatments express the dielectric tensor of a plasma in terms of 
integrals over the plasma velocity distribution and their analytic continuations in 
the complex plane, but do not answer the question of how to calculate the disper- 
sion in a practical way. The relevant velocity-space integrals contain singularities, 
are only analytically tractable in special cases, and are extremely time consuming 
to perform numerically. Furthermore, a case-by-case treatment of the analytic 
properties of the analytically-continued velocity distribution in the complex plane 
is required if those roots of the wave-dispersion equation (which involves the 
plasma dielectric tensor) corresponding to damped or growing waves are to be 
treated correctly by either numerical or analytic means. A further reason that 
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knowledge of the analytic properties is necessary is that the analytic continuations 
of the velocity-space integrals, rather than the integrals themselves, define the 
dispersion functions in the lower half of the complex plane. Together, these limita- 
tions pose a formidable barrier to the use of the general formulas in practice. 
Indeed, Batchelor et al. [l], for example, found the numerical evaluation of the 
dispersion integrals to be the limiting factor in their numerical investigations of the 
dispersion of cyclotron waves. 

In addition to general treatments of the dielectric properties of plasmas, a 
number of more specific analyses have been carried out. In these analyses the 
plasma velocity distribution function is restricted to a particular form for which the 
dispersion functions can be obtained analytically. Examples from the latter category 
include the well-known analytic expressions for the dielectric properties of 
unmagnetized Maxwellian plasmas [2] and analytic forms for the dispersion 
functions of unmagnetized Lorentzian, generalized-Lorentzian, and piecewise- 
continuous velocity distributions (e.g., [3-53, and the references cited therein). 
While these analyses permit rapid computation of wave dispersion using analytic 
expressions for the dispersion integrals, their lack of generality is a serious 
limitation. Many authors have attempted to circumvent this disadvantage by 
approximating a velocity distribution of interest by an ad hoc superposition of 
distributions (most often Maxwellians) for which the dispersion functions are 
known. This method is widely used but is unsatisfactory in that the parameters of 
the component distributions must be adjusted by hand until a reasonable tit is 
obtained. 

What is developed in this paper is a systematic method of decomposing an 
arbitrary distribution into a linear combination of orthogonal functions for which 
the corresponding dispersion functions are known and whose analytic properties 
are well understood. Using this method, evaluation of the wave dispersion is 
accelerated and it is straightforward to extend the dispersion functions to the 
complex plane in order to treat damped or growing waves. No such decomposition 
of the dispersion functions appears to have been previously undertaken. 

The structure of this paper is as follows: In Section 2 the method of decomposing 
the distribution function and constructing the corresponding dispersion function is 
described. The results of Section 2 are applied to a nonrelativistic unmagnetized 
plasma in Section 3, in which three realizations of the basic scheme are developed. 
Numerical results are discussed in Section 4, while Section 5 outlines how the 
method developed in Section 2 can be generalized to treat relativistic and 
magnetized plasmas. 

2. GENERAL THEORY 

In this section we develop a systematic approach to the calculation of the disper- 
sion integrals for a nonrelativistic unmagnetized plasma having an arbitrary 
distribution function. 
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2.1. Dielectric Tensors and Dispersion Integrals 

The dielectric tensor of a single-species, nonrelativistic unmagnetized plasma is 
given by 

for Im w < 0, where k, w, oP, v and fare the wave vector, wave frequency, plasma 
frequency, particle velocity, and velocity distribution, respectively; the analytic 
continuation of (1) defines the dielectric tensor if Im o > 0. The singular integrals 
in (1) can be written in the form 

where x is proportional to u and g(x) involves the derivative of the velocity 
distribution function [6]. The remainder of this section is devoted to describing the 
systematic evaluation of the dispersion function D(z), which is defined by (2) if 
Im z > 0 (with the contour chosen to pass above the pole), and by the analytic 
continuation of (2) if Im z < 0. 

2.2. Systematic Decomposition of Dispersion Integrals 

The systematic procedure proposed here for decomposing dispersion integrals of 
the form (2) is as follows: 

Step 1. Choose an interval I (possibly infinite) outside which the function g(x) 
is negligible. On physical grounds such an interval must exist because the distribu- 
tion function and its derivative must vanish at large velocities. Next, choose a 
complete set of basis functions {u,(x)}, n = 0, 1, . . . . orthogonal with respect to some 
weight function W(X) on the interval 1; i.e., with 

s hdx) u,,(x) 4x)= 4M 6,,,, (3) 

where the h, are normalization constants. The integration in (3), and henceforth, 
extends over the chosen interval I. Use of a complete set of functions guarantees 
that any continuous function can be approximated to arbitrary accuracy by this 
method. The appearance of the weight function W(X) is significant because it can be 
used to factor out the dominant variations in g(x) by writing g(x) = b(x) w(x), 
where b(x) is relatively slowly varying. Examples of this aspect of the analysis are 
given in Section 3. 

Step 2. Decompose g(x) in terms of the chosen weighted orthogonal functions, 
to give 

g(x) = f a,,4,(x) 4~)~ 
II = 0 

(4) 
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with the weight function appearing explicitly and 

U,=h,’ i‘ dx g(x) u,(x). 

Step 3. Introduce the dispersion functions D,(z), defined by 

D,(z) = i‘ dx un(:y;x). 

(5) 

(6) 

The overall dispersion function D(z) is then given by 

D(z) = f O,,(z). (7) 
?I=0 

Note that the weight function w(x) appears in (6), rather than (5), owing to the 
form of the expansion in (4), in which w(x) occurs explicitly. 

Two key requirements must be made of the foregoing procedure before the 
expression (7) can be deemed to be useful; namely, the dispersion functions D,(z) 
must have clearly known analytic properties and must be of a form which can be 
evaluated efficiently. Typically, this involves finding a stable recursion relation for 
D,(z). 

Estimates of the accuracy of the method described here can be made by noting 
that, for Im z > 0, D(z) comprises a contribution from the residue of the integral (2) 
in the complex plane, and a remainder. Of these contributions, the contribution 
from the residue Dres(z) is the more sensitive to inaccuracies in the approximation 
of g(x). We note that Dres(z) = 2rrig(z) for Im z > 0 and, hence, the fractional error 
in approximating Dres(z) using a finite number of terms in (7) is the same as 
that of the corresponding orthogonal-function decomposition of g(z), for which 
standard formulas exist. When Im z < 0, D(z) is defined by the analytic continua- 
tion of (2), rather than by the integral (2) itself. In this case, similar estimates of 
the error incurred in truncating the sum in (7) to a finite number of terms follow 
from the analytic continuation of this sum. 

3. NONRELATIVISTIC UNMAGNETIZED PLASMAS 

Here, we present realizations of the scheme described in Section 2 for three sets 
of orthogonal functions, Hermite, Legendre, and Chebyshev polynomials. Other 
decompositions are also possible, but will not be developed explicitly in this work. 
As mentioned earlier, a major advantage of being able to choose from a variety of 
orthogonal functions is that this flexibility permits one to select the set of functions 
best suited to exploit the qualitative form of the distribution and, hence, of g(x) 
(e.g., asymptotically Gaussian in form; zero outside some range; etc.), thereby 
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speeding numerical calculations and providing for a more compact expression of 
the dispersion functions. 

3.1. Hermite Decomposition 

If the plasma velocity distribution function is asymptotically Maxwellian, g(x) is 
of the form g(x) = b(x) exp( -~*)/rc”~, where b(x) is relatively slowly varying. This 
leads us to use the weight function w(x) = exp( -x2)/n”*, with the Hermite poly- 
nomials H,(x) as orthogonal functions on the interval (-cc, co). 

The dispersion function corresponding to (- l)n+ ’ H,,+ ,(x) is 

= -22 D,,(z) - 2n D,-,(z), (9) 

where the recursion relation H n+ ,(x) = ZxH,(x) - 2nH,_ 1(x) has been used to 
obtain (9). Together with the specific relations 

Do(z) = Z(z), (10) 

D,(z) = Z’(z), (11) 

(9) provides the necessary recursion relation for D,(z), where Z is the standard 
plasma dispersion function [2]. The formula Z’(z) = -2-222(z) enables one to 
show that the derivatives Z’“‘(z) of the Z-function satisfy the same recursion rela- 
tion as the functions D,(z); hence one can make the identification D,(z) = Z(“)(z). 
The final result for D(z) is, thus, 

D(z) = f ( - 1)” a,Z’“‘(z), (12) 
n = 0 

where the coefficients a, are given by 

1 a 
(13) 

The integrations in (13) need be done only once for any given distribution function 
and, hence, need not be optimized for speed because the vast bulk of computational 
time is typically expended in subsequent multiple evaluations of the dispersion. We 
note that the analytical and recursive-stability properties of functions closely related 
to Z’“‘(z) have been explored by Gautschi [7,8], who also obtained an efficient 
algorithm for evaluating Z(z) in the complex plane [9, 10). The relationship of 
Gautschi’s results to the calculation of Z’“‘(z) is summarized in the Appendix. 

Although the sum (12) is guaranteed to converge to D(z) by the completeness of 
the Hermite polynomials, a warning is in order regarding the possibility of 
catastrophic cancellation when (12) is evaluated numerically. A simple, but highly 
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demanding, example illustrates this point in a case for which the dispersion function 
is known exactly. We consider an expansion of the integral 

(14) 

about the origin, where the integrand becomes exponentially small as x0 is 
increased. The integrand in (14) is asymptotically Gaussian and can be decomposed 
into Hermite polynomials, with coefficients a, = x:/n!. This yields 

D(z) = f (-x0)‘? Z’“‘(z)/n!, (15) 
II = 0 

= Z(z - x0), (16) 

which could, of course, have been obtained directly in this particular case. It is 
important to note a loss of accuracy in the numerical evaluation of (15), which 
manifests itself for large x0: the Hermite polynomials are unbounded and 
catastrophic cancellation can occur for some values of z if x0 is large, despite the 
formal convergence of the sum. More generally, this problem can be mitigated by 
expanding about the centroid of g(x), rather than a poorly chosen point at which 
g(x) is exponentially small, as in the case leading to (15). A more representative 
example might involve g(x) being of the form g(x) = p,(x) exp( -x2)/rc1’*, where 
p,(x) is an nth-degree polynomial; in this case complete convergence is attained 
with just n terms of the Hermite decomposition and cancellation problems are 
considerably reduced. Numerical examples of Hermite decomposition are presented 
in Section 4. 

3.2. Legendre Decomposition 

If the function g(x) in (2) is negligible outside some finite range, which we shall 
choose to be (- 1, 1) without loss of generality, then an expansion in Legendre 
polynomials P,(x) is possible, with a weight function of unity. These functions form 
a complete orthogonal set. In this case we have 

u,(x) = P,(X)> (17) 

dx g(x) P,(x), 

D,(z) = -‘W,(z), (19) 

where Q,,(z) is a Legendre function of the second kind. Methods for calculating 
P,(z) and Q,(Z) have been described by Gautschi [7] and Stegun [ 111. The use 
of Legendre decomposition is helpful in avoiding catastrophic cancellation such as 
that described in Section 3.1, because the Legendre polynomials are bounded on the 
interval (- 1, 1). In this decomposition a branch cut appears when the Legendre 
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functions Q,(Z) are extended to the complex plane; an appropriate definition of the 
branch is necessary, but corresponds directly to making an appropriate choice of 
the branch of log [(z- l)/(z+ l)] [3]. 

3.3. Chehyshev Decomposition 

Similar results to those of Section 3.2 can be obtained using Chebyshev poly- 
nomials of the second kind U,(x) as orthogonal functions on the interval (- 1, 1) 
with the weight function (1 - x2)‘j2. This choice is useful for treating plasmas 
having distribution functions which vanish at the ends of the interval (e.g., physi- 
cally, when the particle velocity equals the speed of light) and leads to 

%3(-K) = U,I(X)> (20) 

a,, = (2/x) 11, dx g(x) Un(xh (21) 

D,,(z)= -r[T,,+,(z)- i(1 -z~)“~ U,(z)], (22) 

where T, + 1(z) is a Chebyshev polynomial of the first kind. The polynomial nature 
of T,,+,(z) and U,,(z) makes the analytic properties of D,,(z) especially simple in 
this case. 

4. NUMERICAL EXAMPLES OF HERMITE DECOMPOSITION 

In this section two numerical examples of Hermite decomposition are presented 
to illustrate the methods developed in this work. 

FIG. 1. Non-Gaussian function g(x) used to test Hermite decomposition. 
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1.2 1.6 2.0 

FIG. 2. Modulus-argument diagram of the dispersion function D(Z) corresponding to the function 
g(x) shown in Fig. 1, with z=x+ iy, -2.0 <x < 2.0, and 0 < J’< 2.0. Labels with arrows indicate 
modulus contours at 0.40, 0.56, and 0.72. Similarly, argument contours are labelled at 0.8, 1.2, 1.6, 2.0, 
and 2.4 radians. 

The first example is essentially the one discussed at the end of Section 3.1, in 
which we set x0 = 1 to give g(x) = 7~ “’ exp[ -(x - 1 )‘I. Here, the approximate 
dispersion function obtained by Hermite decomposition is compared with the exact 
one, which is given by (16) with x0 = 1. The exact function, Z(z - 1 ), is evaluated 
using Gautschi’s algorithm [9, lo], which has an accuracy of 5 lOPi in the upper 
half of the complex plane. If we denote the Nth order approximation to Z(z - 1) 
by Z,(z - l), and the maximum fractional error in the upper half plane by 
sN = 1 [Z,(z - 1) - Z(z - l)]/Z(z - l)l,,,, then the results of this comparison are 
aq = 0.44, cs = 3.0 x lo-*, &I2 = 8.5 x 10P4, and E,~ = 1.36 x lo-‘. Rapid convergence 
to the exact result is evident as the order of the approximation is increased. 

For the second example we choose a more complicated distribution, given by 

g(x) = -& C0.4e (Ye l)*+()le-‘“-0.8’~ +0,15e~‘.‘+0.4’~+0,35e~“+l.2’*], 

as shown in Fig. 1. The choice of a superposition of Gaussian functions renders the 
exact dispersion integrals tractable, while nonetheless providing an example of a 
highly non-Maxwellian g(x). A modulus-argument diagram of the dispersion func- 
tion D(z) is shown in Fig. 2. The maximum fractional error of the 16-term Hermite 
approximation in the upper half-plane is E,~ = 1.4 x 10 -‘. 

5. RELATIVISTIC AND MAGNETIZED PLASMAS 

Thus far, we have considered only unmagnetized nonrelativistic plasmas; 
however, it is quite possible to extend the methods described here to treat 
relativistic and magnetized plasmas. In this section we briefly outline some such 
extensions. 
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5.1. &magnetized Relativistic Plasmas 

The dielectric properties of unmagnetized relativistic plasmas can be written in 
terms of integrals of the form 

s 

I 
dx g(,x) 

-1 .X-Z’ 
(23) 

with g( ) 1) = 0 and x equal to the velocity in units of c [ 121. A Legendre decom- 
position of (23), as in Section 3.2, is clearly possible. Alternatively, an expression of 
(23) in Chebyshev polynomials of the second kind U,(x) can be undertaken, as in 
Section 3.3, by writing g(x) = b(x)( 1 - x2)‘j2. In the latter case, the weight function 
w(x) = (1 - x2)‘j2 qualitatively embodies the physical requirement g( f 1) = 0. 

5.2. Magnetized Nonrelativistic Plasmas 

Nonrelativistic magnetized plasmas can be treated by the methods described in 
Sections 2 and 3, since their dispersive properties can be expressed in terms of 
integrals of the form 

& W, YL (24) 

where x and y are the dimensionless momentum components parallel and perpen- 
dicular to the ambient magnetic field, respectively, and h(x, y) involves products of 
Bessel functions and derivatives of the momentum distribution function [6]. The 
integral (24) is of the form (2) with g(x) = JF dy h(x, y), where g(x) is the Bessel- 
function-weighted reduced distribution. In the case of distributions separable in x 
and y (which correspond to v,, and v I, physically), the integral over y need be done 
only once for all x. More generally, g(x) must first be numerically evaluated over 
the range of x of interest, and then the methods of Sections 2 and 3 can be used to 
treat the remaining singular integral over x. This compares with the alternative of 
evaluating both integrals directly by numerical means, with the consequent loss of 
knowledge about the analytic properties of the resulting dispersion functions and 
their correct continuation into the complex plane. 

Two complications enter the analysis for magnetized plasmas: First, one set of 
integrals of the form (24) must be evaluated for each relevant harmonic of the 
cyclotron frequency. Second, and more importantly, j dy h(x, y) is a function of the 
wave properties in the magnetized-plasma case and hence the coefficients a, in (7) 
must be re-evaluated for each new set of wave parameters. This point dictates that 
greater attention be paid to optimizing the speed of calculation of a, when treating 
magnetized plasmas. Nonetheless, the methods developed here reduce each integral 
from a two-dimensional singular form whose analytic properties are unknown 
to a set of one-dimensional nonsingular integrals (to determine the a,) which 
correspond to dispersion functions whose analytic properties are understood. 
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5.3. Magnetized Relativistic Plasmas 

Relativistic magnetized plasmas can be treated relatively easily by the methods 
described above when determining the dispersive properties of waves propagating 
perpendicular to the magnetic field. In this case the dispersion integrals are of the 
form 

I 
dy g(x> Y) -1 (25) 

with x and y being proportional to the kinetic energy and the pitch angle of the 
particles, respectively [6]. The x integral then extends from 0 to cc and it may thus 
be appropriate to choose Laguerre polynomials as orthogonal functions. 

Dispersion functions for waves propagating at an arbitrary angle to the field in 
a relativistic magnetized plasma can also be cast into the form considered in this 
paper. Usually, these functions are written in terms of integrals of the form 

?‘:, s dx z 4 
Ax, Y) 

0 y-CtX-fl’ (26) 

with y = (1 + x2 + J)~)“~ where x and y are the dimensionless parallel and perpen- 
dicular momentum components, respectively, and a and /I are constants [6]. By 
changing variables from x and y to ones (V and p here) tied to the resonance 
ellipses of cyclotron maser theory (26) can be rewritten in the form 

(27) 

with 

xly=U-V(1-e2)“2p, 

y/y = V( 1 - $)‘/2, 

where V,, U, and e are constants [6, 131. As in the case of nonrelativistic 
magnetized plasmas, one set of such integrals must be evaluated for each set of 
wave parameters and for each harmonic. 

6. SUMMARY 

A general procedure for systematic calculation of the dispersive properties of 
plasmas has been developed. This general scheme has been illustrated for 
unmagnetized plasmas with three concrete realizations based on Hermite, Legendre, 
and Chebyshev polynomials, and extensions of these methods to treat relativistic 
and magnetized plasmas have been outlined. Numerical examples of Hermite 
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decomposition show that this method is capable of yielding accurate results for the 
dispersion integrals for both real and complex arguments. 

The expansion method developed here should be of considerable use in calculat- 
ing the dielectric properties of plasmas in a wide variety of situations, particularly 
in the automated calculation of the dielectric properties of plasmas observed in 
astrophysical situations and the laboratory. The main features of this work are: 
(i) A systematic alternative to ad hoc approximation of the plasma dispersion 
integrals has been obtained, based on orthogonal-function expansion of the 
integrands. (ii) The weight function for the orthogonal functions can be used to 
advantage by factoring out the dominant variations in the dispersion integrands. 
(iii) Use of orthogonal-function expansion enables one to use dispersion functions 
which can be evaluated rapidly and which have known analytic properties in the 
complex plane. Knowledge of the analytic properties of the dispersion integrals is 
essential if the dispersion of damped or growing waves is to be treated correctly; 
such waves are extremely difficult to treat if the integrals are performed directly 
because analytic continuation to the lower half plane is required, a region in which 
the integrals no longer define the dispersion functions. 

APPENDIX: CALCULATION OF Z'")(U) 

This appendix contains a brief description of how to calculate the dispersion 
functions Z’“‘(z); for further details, the reader should consult Refs. [7-lo]. 

The Z-function is related to the complex complementary error function by 

Z(u) = in’/2eCU2 erfc( - iu). (AlI 

The nth derivative and nth integral of the right-hand side of (Al) are interrelated 
by 

d” -e-u= 
du” 

erfc( - iu) = (2i)” n! e-- u2Z” erfc( - iu), (A21 

where I” denotes the n th integral. Hence, we have 

Z(“)(u) = i7c’/2(2i)” n! eC”‘Z” erfc( -iu). 643) 

Gautschi [7] described calculation of I” erfc( -iu) by recursion. Computation of 
Z(u) for u in the first quadrant was also discussed by Gautschi [9, lo], with Z 
being used to normalize the recursive series for Z (n). Extension of these results to 
other quadrants is attained by use of the symmetry relations [14] 

Z(fl)(zL)=(-l)n+l [z(nJ(-24*)]*, 

Z(“)(u*) = Z(“)(u)* + 2i7~“~( - 1)” [eF”‘H,,(U)]*, 

(‘44) 

(A51 

which generalize the corresponding known results for Z(u) [2]. 
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